Geomajas Server
geocoder plugin guide

Geomajas Developers and Geosparc

Geomajas Server geocoder plugin guide
by Geomajas Developers and Geosparc

1.16.5
Copyright © 2010-2014 Geosparc nv

Table of Contents

O g 11 oo 1 o o 1
L. HOW dOBS It WOFK? ..ttt et et e e e e e et e e e eeneaes 1
2 U L PRSPPI 2
R O]9 7= o PP 2
3. CONFIGUIBLION ...ttt ettt ettt ettt e et e et e e et e e e eba s 4
L. DEPENUENCIES ...ttt ettt ettt e et e et eaaas 4
2. Static regex geocoder Service CONfIQUIatioNccuuuieeiiiiieeiiiiiie e 4
3. GeoNames Service CONFIGUIBLTIONcceuuieiiiii ettt 7
4. Y ahoo! PlaceFinder geocoder service Configurationc..uoveveeienniiiiiineeeiiineeeenenn 7
5. Type coordinate geocoder service configurationccovveuiiiiiiieiiineiinecieeeeees 8
T o (01 (o T PPN 9
1. How to allow users to switch between geocoder SErVIiCESovvvvveieeiiiiiieeiiiieeeceiinne, 9
2. HOW tO WIite 8 gEOCOUEN SEIVICE ...cevvuiiiiiiii ettt e ettt ettt e e e eeaans 9
3. How to write a service to split the iNput SEHNGveeveiineii e 10
4. How to write a service to combine resultsovvveiiiiiiiiiiiei e 11

List of Figures

1.1. GetLocationForStringCommand OVEINVIEWeiieeunieiiiiiieeeeii e e e e eeeans

List of Tables

2.1. GetLocationFOrSriNGCOMIMANGceeuuuiiiiiiiie et e ettt e e e e e eeeanns

List of Examples

2.1. Usage of the geocoder COMMENGcoouuuiiiiiiiieiiiii e e eaees 3
3.1 PlUgin dEPENTENCYeeeveneeiiii ettt ettt ettt e et e e e e n e eaaas 4
3.2. Base configuration for StatiCRegexGe0COUErSEIVICEvviiviiieeiiiii e 4
3.3, DEINING @ POINE ...ttt e et e et e et e e e et e e e ene s 5
3.4. DEfiNING @ @8 DDOXcccvviiiiii et 5
3.5. Defining @n are@ @nd USEE Talaluueieeiieieii ettt 5
3.6. Multiple Strings t0 MELCH.cooeii e 6
3.7. Multiple strings to match with open end. ... 7
3.8. Defining the GEONameS GEOCOUES SEIVICEuuuieiiiiie ettt e e 7
3.9. Configuring the Yahoo! PlaceFinder geOCOUEYccovuiuiiiiiiiieeiiii e 7
3.10. TypeCoordinateService CONFIGUIALTIONc.uuuiiiiiiiiiei e e 8
4.1. Geocoder service interface definitionuiiiiiiiiiii e 9
4.2. Fields which are defined in GetLOCatiONRESUITcovvviieiiiiie e 10
4.3. Service interface for splitting the Search StHiNgovvviviiiiii e, 10
4.4. Service to cOMDINE SEAICN FESUITSciiiiiieiiii et 11

Vi

Chapter 1. Introduction

The geocoder plugin provides a standard mechanism to convert text, representing an address or point
of interest, in amap location.

For this purpose a command "command.geocoder.GetL ocationForString” is provided which allows
you to do the conversion

This input string is converted to a bounding box which is intended to be zoomed to. A marker may
be displayed at the center of that area.

The actual conversion is done using a pluggable list of geocoder service. Some standard
implementations are provided. Either the first services which produces a match wins, or the results
may be combined.

1. How does it work?

The GetL ocationForStringCommand class handles a request to get a location for a string.

Figure 1.1. GetL ocationFor StringCommand overview

Thisstring isfirst cut into relevant parts, for example "London, UK" may be split into parts "L ondon"
and "UK". This is handled by the SplitGeocoderStringService. The default implementation uses
comma as separator and removes whitespace between the parts.

After that, each of the configured GeocoderServices is given a chance to convert the strings into
alist of locations. If the geocoder service returns one location, it is considered matched. When it
returns multiple locations, the search term is considered ambiguous and the locations are considered
asalternatives. Y ou can configure whether all geocoders need to be given achanceto find the location
or whether it should stop as soon as one service has returned at least one location.

The geocoder services can return either an area (bounding box) or a point. When they returned apoint,
thisis extended to an area centered around that point.

At theend, theresult is prepared for return. The matching locations are combined using the configured
CombineResultService. The default implementation uses the union of the area. When there were no
matches, then all alternatives are returned.

The location also contains the canonical search string.

Chapter 2. Use

How to use the geocoder plugin.

1. Command

The main access point for the functionality which is provided by this plugin is the
GetL ocationForString command.

Table 2.1. GetL ocationFor StringCommand

GetL ocationForStringCommaJhd

Registry key command.geocoder.GetL ocationForString

Module which provides this|geomajas-plugin-geocoder

command

Request object class org.geomaj as.plugin.geocoder.command.dto.GetL ocationFor StringRequest
Parameters « location: string which a geometric location should be searched

for.

« crs. the coordinate reference system which should be used for
the response.

» servicePattern: regular expression which allows you to select
which geocoder service are used to search for the result. By
default all configured services are used.

* |ocale: locale used for the search if known.

* maxAlternatives. maximum number of alternatives to return in
the reply. This defaults to 50.

Description This command allows you to find a map location from a string
representation.

Response object class org.geomagjas.plugin.geocoder.command.dto.GetL ocati onFor StringResponse

Response values « locationFound: indicates whether there was a match.

« canonicalLocation: preferred string for searching the matched
location. Can be the same as the location request parameter.

» center: center of the matched area

« bbox: matched area, the area which the map should probably
zoom to.

 geocoderName: name of the geocoder which producestheresult.
Only available when there was only one matched result.

« userData: any additional object whichwasincluded inthe match
result. Only available when there was only one matched result.

« alternatives: when no match was found, thisfield may contain a
list of locations which may match the request. Each alternative
contains the fields above.

As part of other plugins, tests or code which has the back-end in the same VM, this can berun asin
listing Example 2.1, “Usage of the geocoder command”.

Use

Example 2.1. Usage of the geocoder command

@\ut ow r ed
privat e ConmandDi spat cher commandDi spat cher;

@est
public void oneResultTest() throws Exception {

CGet Locat i onFor St ri ngRequest request = new CGet Locati onFor Stri ngRequest ()
request. set Crs("EPSG 4326");
request. set Locati on("booi schot");

ConmandResponse commandResponse = conmandDi spat cher. execut e(Get Locat i onl
"en");

}

For details on calling this command from inside a client, see the specific client's documentation.

Chapter 3. Configuration

Configuration for the geocoder plugin.

1. Dependencies

Make sure sure you include the correct version of the plugin in your project. Use the following excerpt
(with the correct version) in the dependencyM anagement section of your project:

<dependency>
<gr oupl d>or g. geonmj as. pr oj ect </ gr oupl d>
<artifactld>geonmnj as-proj ect-server</artifactld>
<versi on>1. 16. 5</ ver si on>
<t ype>ponx/type>
<scope>i mport </ scope>

</ dependency>

If you are using geomajas-dep, this includes the latest released version of the caching plugin (at the
time of publishing of that version). If you want to overwrite the caching plugin version, make sure to
include this excerpt before the geomajas-dep dependency.

Y ou can now include the actual dependency without explicit version.

Example 3.1. Plugin dependency

<dependency>
<gr oupl d>or g. geongj as. pl ugi n</ gr oupl d>
<artifactld>geomsj as- pl ugi n- geocoder </ artifactld>
</ dependency>

2. Static regex geocoder service
configuration

The StaticRegexGeocoderService allows you to define the combinations of string to match and the
locations directly in the configuration file.

The strings to match are specified using regular expronslto alow more flexibility. Listing
Example 3.2, “Base configuration for StaticRegexGeocoderService” shows a base configuration.
You have to use the geocoderlnfo property to configure the geolocator. This is done using a
StaticRegexGeocoderinfo object which contains the coordinate space name (EPSG:900913 in this
case, which is Mercator) and define the |ocation mappings.

Example 3.2. Base configuration for StaticRegexGeocoder Service

<bean nane="st ati cRegexGeocoder Servi ce" class="org. geonsj as. pl ugi n. geocoder . ser
<property nane="geocoder | nfo">
<bean cl ass="org. geonsj as. pl ugi n. geocoder . api . St at i cRegexGeocoder | nf 0" >
<property nane="crs" val ue="EPSG 900913"/>
<property nane="|ocati ons">

<list>
<ref bean="Booi schot Short"/>
</list>

</ property>

Lsee http://downl oad.oracl e.com/javase/1.4.2/docs/api/j avalutil /regex/Pattern.html

http://download.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html

Configuration

</ bean>
</ property>
</ bean>

Thelocation mappings themselves are contained in Stati cRegexGeocoderL ocationl nfo instances. Y ou
have to specify the strings toMatch, and a location as either point of bounding box. Y ou can specify
the canonical form for the search.

In listing Example 3.3, “Defining a point” you see a definition which will match a single location
string starting with second. As this is done case independently, some examples of matching strings
are "second" and SECondary". It indicates a point with coordinates (10000,10000).

Example 3.3. Defining a point

<bean cl ass="org. geonsj as. pl ugi n. geocoder . api . St at i cRegexGeocoder Locat i onl nfo" >
<property nane="toMatch">

<list>
<val ue>second. *</ val ue>
</list>

</ property>
<property nane="canoni cal ">

<list>
<val ue>secondSer vi ce</ val ue>
</list>

</ property>

<property nane="x" val ue="10000"/>

<property nane="y" val ue="10000"/>
</ bean>

The location info object can also be used to match an area. In listing Example 3.4, “Defining an area
bbox” you see the location bounding box defined using the bbox property. If you would accidentally
define both a bounding box and point coordinates, then the bounding box will be used for the result.

Example 3.4. Defining an area bbox

<bean cl ass="org. geonsj as. pl ugi n. geocoder . api . St at i cRegexGeocoder Locat i onl nfo" >
<property nane="toMatch">

<list>
<val ue>bbox</ val ue>
</list>

</ property>
<property nane="bbox" >
<bean cl ass="org. geonsj as. geonet ry. Bbox" >
<property nane="x" val ue="0"/>
<property nane="y" val ue="50000"/>
<property nane="w dt h" val ue="100000"/ >
<property nane="hei ght" val ue="80000"/>
</ bean>
</ property>
</ bean>

A location can aso include extra data in the result. You need to wrap this data in a subclass of
ClientUserDatal nfo. The object to be returned can be defined using the userData property.

Example 3.5. Defining an area and user data

<bean cl ass="org. geonsj as. pl ugi n. geocoder . api . St at i cRegexGeocoder Locat i onl nfo" >
<property nane="toMatch">
<list>

Configuration

<val ue>bl a</ val ue>
</list>
</ property>
<property nane="bbox" >
<bean cl ass="org. geonnj as. geonet ry. Bbox" >
<property nane="x" val ue="30000"/>
<property nane="y" val ue="50000"/>
<property nane="w dt h" val ue="10000"/ >
<property nane="hei ght" val ue="10000"/>
</ bean>
</ property>
<property nanme="user Data">
<bean cl ass="org. geonnj as. pl ugi n. geocoder . servi ce. User Dat aTest | nf 0" >
<property nane="val ue" val ue="xobb"/>
</ bean>
</ property>
</ bean>

ThetoMatch property containsalist of stringswhich need to be matchedin order. The matching checks
every string in the location strings for a matching string in the toMatch list, in order. The matching
is case independent and always matches the entire string. A level can be marked as optional in the
location strings by using a question marks as prefix for the regular expression. The question mark is
removed before the actual evaluation of the regular expression.

As an example we will apply the example in listing Example 3.6, “Multiple strings to match.” to a
couple of data sets.

e ["Belgium", "Antwerpen", "Booischot"]: matches, al three parts match the specific regular
expressions.

* ["Booischot", "Antwerpen”, "Belgium"]: no match asthe "BE.*" regular expression does not match
"Booischot".

* ["BE", "Booischot"]: matches, the "Antwerp.*" regular expression is marked as option using the
"7 prefix.

* ["Belgium"," Antwerpen"]: does not match asthe "Booischot" regular expression is not matched for
lack of input strings.

* ["Belgium", "Antwerpen", "Booischot’, "Broekmansstraat]: not matches as the last string
"Broekmansstraat" does not have a matching regular expression.

Example 3.6. Multiple strings to match.

<bean nanme="Booi schot Strict" class="org. geonsj as. pl ugi n. geocoder. api . St ati cRege:
<property name="toMatch">
<list>
<val ue>Be. *</ val ue>
<val ue>?Ant wer p. *</ val ue>
<val ue>Booi schot </ val ue>
</list>
</ property>
</ bean>

For thislast case, where smaller divisions are not know (in this case the street name), you can end the
list of regular expressions with "**" (see listing Example 3.7, “Multiple strings to match with open
end.”). Thiswill assure that any remaining strings from the input are discarded if any are remaining.
This would assure that the last case in the previous list matches. The other cases would still have the
same resullt.

Configuration

Example 3.7. M ultiple strings to match with open end.

<bean name="Booi schot" cl ass="org. geongj as. pl ugi n. geocoder . api . St ati cRegexCGeoco
<property nane="toMatch">
<list>
<val ue>Be. *</ val ue>
<val ue>?Ant wer p. *</ val ue>
<val ue>Booi schot </ val ue>
<val ue>**</val ue>
</list>
</ property>
</ bean>

3. GeoNames service configuration

The GeonamesGeocoderService uses the search web service at geonames.org to handle the geocoder
requests. You can only configure the "userName" property which is the geonames user which is
registered to access the service. This can either be passed directly or using the "userNameProperty"
which indicates the property which contains the user name to use. Defining the service is pretty
straightforward.

Example 3.8. Defining the Geonames geocoder service

<bean cl ass="org. geomsj as. pl ugi n. geocoder . servi ce. GeonanesCeocoder Servi ce" >
<property nane="user Nane" val ue="geomsj asHudson" />
</ bean>

The GeoNames service never returns more than 50 results.

When the initial query returned no results, it will retry the search using fuzzy matching.

4. Yahoo! PlaceFinder geocoder service
configuration

Thisusesthe Y ahoo! PlaceFinder service (http://devel oper.yahoo.com/geo/placefinder/). When using
this geocoder, you need a appid from Y ahoo! and you have to make sure you comply with their terms
of use.

To use the geocoder, just create the bean and set the appl d.

Example 3.9. Configuring the Yahoo! PlaceFinder geocoder

<bean name="ypf" cl ass="org. geomyj as. pl ugi n. geocoder . servi ce. YahooPl| aceFi nder Ge
<property nane="appl dProperty"” val ue="YahooAppld" />
</ bean>

There are a couple of properties which influence how the appld can be passed:
» appld: you just define the appld in the configuration file.

 appldProperty: the appld is read from the property which is specified. This can be helpful if you
don't want to hardcode the property in your configuration files for some reason.

* skipAppldCheck: normally an exceptionisthrownwhenthe Y ahoo! PlaceFinder geocoder iscreated
without a appld. By setting this property to true, you can avoid this exception, making sure your
application will run without the appld (though obviously no results can be found).

http://developer.yahoo.com/geo/placefinder/

Configuration

5. Type coordinate geocoder service
configuration

Thisis a simplistic geocoder which allows the user to directly type the coordinate. To configure it,
you just have to supply the default CRS used for the coordinates (if not specified, this defaults to
EPSG:4326).

Example 3.10. TypeCoor dinateSer vice configur ation

<bean nane="tcs" cl ass="org.geomsj as. pl ugi n. geocoder. servi ce. TypeCoor di nat eSer v/
<property nane="defaul tCrs" val ue="EPSG 900913" />
</ bean>

The service accepts input strings like "4.77397 51.05125" to jump to a coordinate, using a space is
used as separator between the ordinates. Thisusesthe defaultCrsas configured. Y ou can also explicitly
specify the CRS by using a string like "4.77397 51.05125 crs:EPSG:4326".

Chapter 4. How-to

This chapter details the extension possibilities of the geocoder plugin.

1. How to allow users to switch between
geocoder services

If you want your users to select between several geocoder services, you can use the servicePattern
property in the command request to select the service.

You could for example configure both the Y ahoo! PlaceFinder and GeoNames geocoder services.
It is best that you provide explicit names to each service. You can now add a selection widget in
your user interface. Depending on the selected value, you can use the setServicePattern() method
of GeocoderWidget or alternatively on the GetLocationForStringReguest object of the command
invocation to assure the selected geocoder service is used. Note that the service pattern is a regular
expression. For alphanumerical names, just providing the name as pattern will work.

2. How to write a geocoder service

Writing a geocoder service is reasonable easy. All you have to do is create an implementation of
the GeocoderService interface (listing Example 4.1, “Geocoder service interface definition”). The
getCrs() method is used by Geomajas to know the coordinate system which is used for the results of
your service. Thisisused to convert to the coordinate system of the client.

The name is used to select which services should be used for the search. It is recommended that you
provide both a default name and a setter to allow usersto change this.

Example 4.1. Geocoder service interface definition

public interface Geocoder Service {

/**

* Nanme for the geocoder service. This nane can be used to select which geo
* search.

*

* @eturn name for this geocoder

*

/

String get Nane();

/**

* CRS which is used for the results of this geocoder.

*

* @eturn CRS

*

/

Coor di nat eRef erenceSystem get Crs() ;

/

L R A

*

Try to get a location for the strings passed. This can be either a coord
result object.

@aram | ocation | ocation strings, fromgeneral to nore specific

@ar am maxAl t ernati ves maxi num nunber of alternatives which can be repli
return nore, but they will be discarded.

@aram | ocal e locale use for the location if known (can be null if not ki

@eturn results objects, when only one this is a definite result, when s

How-to

* result are the alternatives. Wien no results an enpty array or n
*/
CGet Locati onResul t[] getlLocation(List<String> location, int nmaxAlternatives,

}

The getL ocation() method does the actual work of converting the location strings (ordered from most
general, biggest area, to more specific) to alocation. The method is expected to return null or an empty
list if no results where found for the location string, or one object if the strings were matched, or
multiple results when the matching was ambiguous and resulted in several aternatives.

The result itself contains the information from listing Example 4.2, “Fields which are defined in
GetL ocationResult”.

Example 4.2. Fields which are defined in GetL ocationResult

public class GetLocati onResult {

private List<String> canonical Strings;
private Coordi nate coordi nate;

private Envel ope envel ope;

private String geocoder Nane;

private CientUserDatal nfo userDat a;

Thefieldsinclude:

» canonicalStrings: the preferred strings to use for the location. Can be null if no preferred string
exists or it isnot knows. In that case, the client will get the search strings as resullt.

« coordinate: the coordinate for the location. This field is only used when no envelope was given.
The coordinate will be converted to the requested CRS and an area will be built around this point
(according to command configuration).

» envelope: the bounding box for the location. This is the preferred result and has precedence over
the coordinate field.

» geocoderName: name of te geocoder which produced the result. Y ou don't have to set this, it will
be set by the command.

 userData: any additional user data the geocoder may wish to return to the client.

3. How to write a service to split the input
string

The geocoder command uses an instance of SplitGeocoderStringService to split and sort the initial
search string. This should help to make the searching easier and assure the separator for location
indicators can be configured and is geocoder service independent.

This way you can configure whether you prefer your users to type "London, UK", "UK, London",
"London - UK" or something else.

You basicaly have to implement the service in listing Example 4.3, “Service interface for splitting
the search string” and set that in the GeocoderInfo instance in your application context.

Example 4.3. Serviceinterface for splitting the search string

public interface SplitGeocoderStringService {

/**

10

How-to

Split the given string in a list of strings according to the separator c
bi ggest area should cone first (assum ng the original format had a noti ol

@eturn list of strings with split location
/
List<String> split(String |ocation);

*
*
*
* @aramlocation location to split
*
*

*

/
Conmbine the list of strings back into one string accoring to the convent|
the reverse of the split functions. As end result split(conbine(split(x)

b I

@ar am mat chedStrings strings to conbine
* @eturn conbined string
*/
String conbi ne(List<String> matchedStrings);
}

Y ou have to provide two methods, one for splitting and one for combining.

4. How to write a service to combine results

When multiple geocoder services found a match for the search string, an instance of
CombineResultService is used to combine these results to one area. Two obvious options
would be either to use the union or the intersection of the areas (these are already provided
as CombineUnionService and Combinel ntersectionService), but you can aso define your own
combination strategy.

Example 4.4. Service to combine sear ch results

public interface Combi neResult Service {

/**

* Conbi ne the envel opes fromthe match results into the end result.
*

* @aramresults results which need to be conbi ned

* @eturn result envel ope

*/

Envel ope conbi ne(Li st<CetLocati onResult> results);

}

All you have to do is implement the combine() method. The strategy can be configured in the
GeocoderInfo instance in your application context.

11

	Geomajas Server geocoder plugin guide
	Table of Contents
	Chapter 1. Introduction
	1. How does it work?

	Chapter 2. Use
	1. Command

	Chapter 3. Configuration
	1. Dependencies
	2. Static regex geocoder service configuration
	3. GeoNames service configuration
	4. Yahoo! PlaceFinder geocoder service configuration
	5. Type coordinate geocoder service configuration

	Chapter 4. How-to
	1. How to allow users to switch between geocoder services
	2. How to write a geocoder service
	3. How to write a service to split the input string
	4. How to write a service to combine results

